

VVMethoden – TP2

Criticality Analysis for the Verification and Validation of Automated Vehicles

Christian Neurohr

OFFIS e.V. – Institute for Information Technology

Criticality Analysis in VVM

Goal: develop a **deep understanding** for the structure of the open context with respect to the emergence of criticality and its conditions.

- ➤ Identification and modelling of relevant influencing factors associated with criticality → criticality phenomena
- Improved understanding of criticality phenomena by analysis of causal relations
- Abstraction leads to classification of scenarios and condensation of test space

> Employed tools:

- Metrics, ontologies, simulation
- Acquisition & management of knowledge and data
- Statistical analysis, machine learning

Use Case "Urban Intersection"

Criticality Analysis – Basic Concept

Assumptions: Humans are able to drive reasonably safe by recognizing a limited and manageable set of abstract classes of danger, i.e. criticality phenomena → **Finiteness**

The relevant phenomena leave traces in a continously growing data basis → Convergence

Criticality Phenomenon "Occlusion"

- ➤ Identify the criticality phenomen ,Occlusion' (e.g. via expert knowledge)
 - > Find adequate level of abstraction plus relevant concretizations
 - > Use ontological representation and classification to organize knowledge

Absolute Cases Relative Cases		
2701	21.79%	
573	4.62%	
1031	8.32%	
982	7.92%	
0	0%	
n.i.	n.i.	
221	1.78%	
n.i.	n.i.	

Criticality Phenomenon	Ontological Classification	Estimated Criticality	Tags
Occlusion	Perception	Medium	Limited Perception
Occluded Pedestrian	Perception	High	Limited Perception, VRU
Occluded Bicyclist	Perception	High	Limited Perception, VRU
Occluded Intersecting Vehicle	Perception	Medium	Limited Perception, Trajectory
Occluded Obstacle	Perception	Medium	Limited Perception, Obstacle
Occluded Lane Markings	Perception	High	Limited Perception, Lane Markings
Occluded Traffic Sign	Perception	Depends	Limited Perception, Traffic Sign
Occluded Traffic Light	Perception	High	Limited Perception, Traffic Light

- > Check available data basis for empirical evidence whether the phenomena are relevant
 - Searching the GIDAS database yields
 - \triangleright N = 12394 accidents in urban arreas involving a passenger car
 - ➤ 2701 ≈ 21,79% are associated with "Occlusion"
 - > Strong indication that Occlusion is a relevant phenomenon (even for automated vehicles)

Causal Relation "Static occlusion of traffic participant"

- Use directed acyclic graphs to represent hypotheses about the underlying causal relation
- ➤ Incorporate **criticality metrics** as to make criticality measurable, e.g. Time-To-Collision, required acceleration, ...
- Collect evidences for causal relations using real-world data and simulation
- Use abstraction/refinement to find an adequate level of abstraction

FIGURE 6: Causal relation $CR_{stat-occ-tp}$, represented as a DAG, connecting the criticality phenomenon $CP_{stat-occ-tp}$ to criticality measured via conditional required acceleration ($a_{req,cond}$). Unobserved variables are gray and independent variables are orange. The exposure variable 'occlusion' is marked green. The outcome variable 'max $a_{req,cond}(ego)$ ' is marked blue.

Plausibilization of Causal Relations using Simulation

In order to generate evidences for the causal relation "static occlusion"

consider an abstract scenario with a static occlusion present (based

on VVM Use Case 2-3)

 For realization in simulation (e.g.
OpenPASS, CARLA, ...) derive an associated logical scenario

Parameter	Range
ego start position (x, y) ego target position (x, y) ego target speed (km/h) bicyclist start position (x, y) bicyclist target position (x, y) bicyclist target speed (km/h)	$[-58, -33] \times [-29, -28]$ $[50, 55] \times [-29, -28]$ [25, 60] $[31, 32] \times [3, 15]$ $[-50, -45] \times [-34, -33]$ [10, 25]
Dimension of O (discretized as number of parking cars) Position of $O(x, y)$	$\{0, 1, 2, 3, 4, 5, 6, 7\}$ $[2, 20] \times ([-35, -34] \cup [-26, -25])$

Evaluation of Criticality Metrics and Data Analysis

As to generate data, use **stochastic variation** of parameters (e.g. p = 13) to obtain **concrete scenarios** (e.g. n = 1000) for simulation and evaluate suitable criticality metrics (e.g. m = 2)

FIGURE 11: SPrET and $a_{\text{req,cond}}$ over time for a critical occlusion (left) and an uncritical non-occlusion (right) scenario.

- For each simulation run evaluate whether the phenomenon was present (did an occlusion happen or not?)
- Perform statistical analysis of the resulting data set in $\mathbb{R}^{n \times (m+p)}$

-40

TABLE 2: Significant ($\alpha = 10^{-9}$) results of correlation analysis between variables and $a_{\rm req,cond}(ego)$ using Spearman's ρ .

Variable	$\textbf{Correlation} \ (\rho)$	p-value
Occlusion	0.29	$p < 10^{-20}$
Duration of occlusion	0.26	$p < 10^{-15}$
ego starting position (x)	-0.24	$p < 10^{-14}$
bicyclist starting position (y)	-0.35	$p < 10^{-29}$
bicyclist target speed	0.42	$p < 10^{-44}$
Position of $O(y)$	0.20	$p < 10^{-9}$

Group B: occlusion present

Further reading

- Journal Publication "Criticality Analysis for the Verification and Validation of Automated Vehicles" published at IEEE Access (21.01.2021)
 - Joint publication by several VVM partners
 - Authors: Christian Neurohr (OFFIS), Lukas Westhofen (OFFIS), Martin Butz (Bosch), Martin Bollmann (ZF), Ulrich Eberle (Opel), Roland Galbas (Bosch)
 - ResearchGate
 - IEEExplore

Thank you for the attention.

Contact:

Dr. Christian Neurohr

+49 441 9722-593

christian.neurohr@offis.de

Criticality Analysis – In a Nutshell

Criticality Analysis

 $\infty \mapsto n$

- CriticalityPhenomena
- Causal Relations
- AbstractScenario Catalog

How can we find all the relevant artifacts for the safe operation of fully automated vehicles within an infinitedimensional space?

- ➤ Extract associations → phenomena
- ➤ Find plausible explanations → causality
- ➤ Use abstraction → catalogization

Criticality Analysis – Detailed Flowchart

- Method Branch Identification of criticality phenomena, proposal of causal relations, evidence for plausibility of hypotheses.
- Information Branch Knowledge and data management for the criticality analysis, Ontologies.
- Scenario Branch Scenarios as the 'substrate' of the criticality analysis, a means for structuring processes and description of reality

Criticality Analysis – Abstract Scenarios

Abstract Scenario: "Occluded Bicyclist at T-intersection"

- ➤ Evaluate criticality metrics on scenarios with (and without) phenomena (e.g. occlusion) in order to collect evidences for causal relations
 - → Set up simulative experiments using the framework of statistical hypothesis testing
- Build up catalogue of abstract scenarios and use mechanisms for instantiation to more concrete scenarios
- > Derive suitable abstract scenario classes with respect to phenomena and causal relations
 - → Employ Zone Graphs for classification