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Abstract. A methodical criticality analysis for automated driving sys-
tems exhibits numerous valuable use cases for the application of com-
puter simulations. Naturally, these simulation use cases pose require-
ments, specific to a criticality analysis, on the employed simulation sys-
tem and the simulation models. In this work, we gather simulation use
cases coming from the criticality analysis and delineate a process how re-
quirements on simulation can be derived therefrom. This process is then
instantiated for the open source simulation platform openPASS by elic-
itation of general as well as scenario-based requirements on openPASS
necessary for conducting a criticality analysis.
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1 Introduction

As the complexity of the problem of verification and validation of automated
driving systems (ADSs) and their various subsystems vastly exceeds the stake-
holders’ constraints on resources, i.e. time and costs, the process of simulation
is likely to play a key role in the homologation of these technologies [1]. In order
for computer simulations to fill this role adequately, besides the validity issue
for simulation environments and models, their properties have to adhere to the
requirements imposed upon them by the methods which embed simulation in the
verification and validation process. One such method is the criticality analysis
for ADSs, which aims at eliciting a finite set of artifacts that can be used to
structure the open context of the operational domain [2]. For this, a criticality
analysis incorporates simulations as an important tool to explore the emergence
of criticality in interesting scenario classes. The value of these simulations rests
their validity, i.e. on the properties of the employed simulation environment and
models as well as their interactions. Naturally, this interaction leads to the crit-
icality analysis imposing requirements on nearly all aspects of such computer
simulations.

The main contributions of this work are as follows:

• provide a detailed description of simulation use cases within the framework
of the criticality analysis,

• systematically derive general requirements on the simulation system and
simulation models from these use cases, and

• perform a scenario-based derivation of requirements on openPASS for criti-
cality analysis based on the functional uses cases of the VVM project.

This manuscript is structured as follows: After the introduction, Section 2 de-
lineates the concept of the criticality analysis and explores simulation uses cases
within this concept. In Section 3, we derive general requirements on simulation
can be derived from the simulation use cases withinh a criticality analysis. Sub-
sequently, in Section 4, we instantiate the process for the derivation of require-
ments for the openPASS simulator. Traditionally, we conclude the document
with Section 5.

2 Simulation within a Criticality Analysis for Automated
Driving Systems

In this section, after a brief introduction to the criticality analysis for ADSs in
Section 2.1, we explore various simulation use cases therein.

2.1 Introduction to the Criticality Analysis

A criticality analysis for the verification and validation of ADSs is essentially a
context analysis for an abstract class of such systems [2]. It precedes the concept
phase and aims at structuring the open and complex context in which ADSs are
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expected to operate safely by eliciting a finite and manageable set of artifacts
that can be used to structure the operational domain.

As can be seen from the flowchart of Figure 1, the criticality analysis is
subdivided into three branches:

• the method branch: its main goal is to identify safety-relevant influencing
factors within the open context that are associated with criticality, called
criticality phenomena (CP), and to analyze the underlying causalities re-
sulting in causal relations for these CP,

• the information branch is concerned with providing the method branch with
knowledge and data as well as the acquisition, organization and management
thereof,

• the scenario branch embeds the artifacts of the method branch in the scenario-
based verification and validation approach.
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Fig. 1: Overview of the revised procedure of the criticality analysis, cf. [3, Fig-
ure 2].

Within the VVM project5, the criticality analysis and its branches have been
subject to various scientific publications that provide in-depth knowledge to the
interested reader, e.g.

5 https://www.vvm-projekt.de/en
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• the concept paper ’Criticality Analysis for the Verification and Validation of
Automated Vehicles’ [2],

• the review paper ’Criticality Metrics for Automated Driving: A Review and
Suitability Analysis of the State of the Art’ [4],

• the comprehensive analysis of the GIDAS database regarding the presence
of CP in accident data [5], and

• from the information branch, ’Using Ontologies for the Formalization and
Recognition of Criticality for Automated Driving’ [6], and

• the ’6-Layer Model for a Structured Description and Categorization of Urban
Traffic and Environment’ [7].

In the context of simulation, let us also mention ’Simulation of Abstract
Scenarios: Towards Automated Tooling in Criticality Analysis’ which takes first
steps towards bringing abstract scenario simulaton into practice [8]. A summary
of these publications can be found in the VVM Deliverable D08 ’Advances on
the Criticality Analysis for Automated Driving Systems’ [3].

2.2 Simulation and Criticality Metrics

To connect computer simulations with the criticality analysis, criticality needs
to be measurable in a simulation. In particular, it needs to be computable from
data generated by simulations runs. For this, so-called criticality metrics are
used, cf. [4]:

Definition 1 (Criticality Metric). A criticality metric is a function κ : S ×
R+ → O that measures for a given traffic scene S ∈ S at a time t ∈ R+ aspects of
criticality on a predetermined scale of measurement O ⊆ R∪−∞,+∞. Scenario
level criticality metrics extend this definition from scenes to scenarios.

Scenario-level criticality metrics extend this definition from scenes to sce-
narios, i.e. adding retrospective temporal aspects to the measurement [9]. Most
criticality metrics only quantify over a subset of the influencing factors that are
associated with criticality, such as spatial, temporal, dynamical, perceptual, or
environmental circumstances. They can be applied for several purposes along
the V-model, cf. [4, Section 3]. Here, we briefly list the identified applications:

• Objective Function (A.1)
• Run-Time Monitoring (A.2)
• Identification of Risk-Reducing States (A.3)
• Requirement Elicitation (B.1)
• Scenario Elicitation (B.2)
• Testing (B.3)
• Safety Argumentation (B.4)

Many criticality metrics rely on physical quantities related to (dynamic) ob-
jects present in traffic scenes or scenarios as inputs. These inputs are are then
aggregated by the metric to a single value that claims to be a quantification of
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an aspect of criticality. For example, the Time-To-Collision (TTC) metric, de-
fined on a constant velocity motion model, utilizes the velocities and distances
of traffic participants in order to quantify the temporal dimension (’Time-To’)
of criticality (’Collision’).

A comprehensive overview of criticality metrics, their classification and their
properties can be found on this website: Criticality Metrics for Automated Driv-
ing – which is supplementary material to the publication [4].

2.2.1 Implementation and Evaluation Criticality Metrics The usage
of criticality metrics within a simulation is a key enabler for the virtual parts
of the criticality analysis. Many criticality metrics are easily implemented when
the required parameters can be obtained from the simulation either via live-
evaluation at scene level or at the end of a scenario, e.g. using logged data. For
example, the CARLA simulator offers a comprehensive Python API [10]. The
evaluation of criticality metrics for a single simulation run can either be done
during the simulation on scene-level or after the simulation run has finished,
using the necessary logged data - on scene level or on scenario level.

In the VVM project, ZF implemented a simulator-agnostic framework for the
evaluation of criticality metrics, called CriSys (Criticality Identification System)
that can be used to evaluate a variety of criticality metrics on simulated traffic
scenarios based on logged data [11]. Besides standard metrics such as TTC or
BTN, several criticality metrics that originated within the VVM project have
been implemented in CriSys, e.g. MerLin [12], Evasion Threat Metrics (ETM)
[13], or PrET [3, Section 4.1.4].

2.2.2 Engineering, Target Values, and Calibration of Criticality Met-
rics If a simulator allows the implementation and evaluation of criticality metrics
in general, it can, of course, be used for all kinds of exploratory tasks such as the
engineering of novel criticality metrics or the adaption of existing ones. In this
regard, simulation is an inexpensive tool that can be employed before validating
criticality metrics on real-world data.

Moreover, for many applications of criticality metrics, adequate target values
are needed. For example, when selecting critical traffic scenarios from a data set
of intersection scenarios, the analyst could filter this data set by requiring that
the Post-Encroachment-Time (PET) is lower than 1.5 seconds (the target value).
In order to find suitable target values, depending on the criticality metric and
the application at hand, scenario-based microscopic traffic simulation can be
employed. A collection of target values published in the literature for a variety
of criticality metrics are available online6.

Another advantage of simulations is the calibration of criticality metrics:
some criticality metrics have free parameters in their definition that need be fine
tuned for the respective application, e.g. α and β in the conflict index (CI) [14].

6 http://purl.org/criticality-metrics

https://criticality-metrics.readthedocs.io/en/latest/index.html
https://criticality-metrics.readthedocs.io/en/latest/index.html
http://purl.org/criticality-metrics
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2.3 Refinement of Criticality Phenomena

Criticality phenomena (CP) are defined as influencing factors associated with an
increase in measured criticality, cf. [2, Definition 2]. Let us immediately mention
that this association might not be causal. One of the goals of the criticality
analysis is to create a collection of CP and to estimate their relevance. In order
to keep this collection manageable in extent but still reach a sufficient saturation,
we leverage on the concept of abstraction. Nonetheless, we are also interested in
refining a rather abstract CP, since analyses of different causal relations for this
abstract CP may be required for the derivation of specific and effective safety
principles [15]. We now first describe this refinement process in general, and
subsequently highlight how simulation can aid in this procedure.

For describing the process, let us use the example of ’occlusion’, a CP that has
various important concretizations such as ’occluded pedestrian in urban area’ or
’occlusion of area in front of lead vehicle’. Whereas a valid safety principle for the
first would be a reduction of speed around areas where pedestrians may appear,
the latter can be addressed by increasing the safety distance to the lead vehicle
by some margin. Thus, to address the abstract CP ’occlusion’, at least two rather
different safety principles are required. Moreover, many cases of occlusion are
completely irrelevant, such as occluded but uninvolved traffic participants far
away from the ego vehicle.

The problem is generalized as follows: Given a CP X, if X is described
too abstractly it is likely not at all or only weakly associated with measured
criticality. Thus, in order to uncover the potential association, we might need to
describe X more concretely. For this, we propose a two-step concept of refining
a given CP X:

(1) Find a set of counterexamples Sccex to the statement ’all scenarios in which
X is present are significantly associated with criticality, as measured by an
(aggregate) criticality metric’. Thus, we need to find a set of scenarios Sccex
withX occurring who are not at all or only weakly associated with criticality.

(2) If this set exists, we use Sccex to refineX through (manual or semi-automated)
refinement by looking at the reasons why Sccex is at most weakly associated
with criticality.

Figure 2 provides a visualization of this two-step concept for the refinement
of CP. Let us consider an example.

Example 1 (X=’Occlusion’).

1. We identify a set of concrete scenarios Sccex for all of which holds that
there is a vehicle on the opposite lane not being perceived by the ego due to
occlusion. There is nothing interesting happening, all participants just follow
their trajectories.

2. We manually analyze Sccex to find that, for occlusion to be relevant, there
must be a possibility of the occluded objects to have intersecting trajectories.

3. We thus refine X to the more concrete CP X ′ = ’Occlusion of an object with
a non-zero probability of intersecting the ego’s trajectory’ which effectively
excludes the scenarios in Sccex.
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Fig. 2: Visualization of the two-step concept for refining a criticality phenomenon
using criticality metrics, taken from Neurohr et al. [2].

Simulation can be of great benefit in this process, as it provides the means
to generate large amounts of data for finding and analyzing counterexamples.

• In step (1), the search of counterexamples: Simulation can be used for search-
ing through Sc(X) (obviously, not exhaustively). If this search is done clev-
erly (e.g. by optimization of a criticality metric), the simulative search can
hopefully identify a non-empty set Sccex (under the assumption that such a
set exists), i.e. uncritical regions of Sc(X).

• In step (2), the analysis of the resulting counterexamples: Once Sccex is
identified, we need to (semi-automatically or manually) identify why those
scenarios are less critical than expected. Looking at raw trajectories in plain
text files is unfeasible for a manual approach, but may be useful when going
towards automation. Hence, we can employ:
• methods and tools to visualize the simulation results, e.g. by a 2D- or
3D-visualization for single runs in the set Sccex, and even a visualization
of multiple runs at the same time using data visualization techniques.

• textual simulation output to allow for more sophisticated data analysis
methods to analyze the counterexamples.

2.3.1 Requirements for Criticality Phenomena Refinement In order
for simulation to be useful in refining CPs, we require several features, such as
searching in scenario spaces. These are listed in the following.

1. If the simulation supports an optimization/search approach, the user shall
be able to specify the direction of the search, e.g. by a function to optimize.
In this case, the optimization goal that we feed into the simulation could for
example be to minimize the Break-Threat-Number (BTN).

2. It is not possible to enumerate all logical scenarios in which a certain CP X
is present. Hence, we need a possibility of specifying that the simulation shall
search through the space spanned by an abstract scenario, e.g. the set of all
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scenarios where X is occurring without needing to specify anything more
concretely. The method shall give coverage guarantees, as far as possible.

3. The simulation shall create a broad and highly varied data basis of scenarios
where the CP X is present.
a. In the beginning, this can be on an abstract level (e.g. through abstract

models only considering a discrete position of TPs).
b. If no counterexamples can be identified using an abstract simulation,

model precision needs to be iteratively refined (e.g. through more con-
crete models using a continuous representation of the TPs’ positions)
until
i. a level of detail is reached where a counterexample can be identified,
ii. or the analyst decides to give up and states that there is a very low

chance of identifying a counterexample.
4. The simulation shall be able to sample and simulate ’abnormal’ concrete

scenarios from an abstract one, i.e. those in the long tail of distributions, for
example scenarios in which:
a. Traffic participants break traffic rules or do not adhere to norm behavior
b. Unlikely weather events occur
c. Unusual configurations of static objects such as road geometry or traffic

sign constellations are present
5. As to combine 1., 2., and 3., we may use guided simulation techniques over a

given abstract scenario, where the simulation actively tries to change prob-
ability distributions of such a scenario in way that certain conditions will be
met in the simulation.
a. In this simulation use case, the direction of optimization is towards iden-

tifying scenarios in a given scenario space that are not at all or only
weakly associated with criticality, thus minimizing criticality in a given
abstract scenario.

b. For this case, the employed criticality metrics should be able to iden-
tify cases with a low criticality, i.e. they may be different from over-
approximating criticality measures (such as the WTTC).

6. The simulation shall provide a useful visualization of the results, e.g. using
a 2D- or 3D-visualization of the resulting happenings, possibly combining
multiple simulation runs in one visualization to allow for an easy comparison
of runs.

7. The simulation shall enable a consecutive data analysis of the results, e.g.
by providing data logging possibilities of single runs.

2.4 Instantiation of Causal Relations on Synthetic Data

Koopmann et al. propose a method to assess the causes behind such increases
in criticality [15]. This process relies on data, which can also be created syn-
thetically, i.e., from simulation. We first sketch the proposed process and then
discuss how synthetically created data can be incorporated.

The central element of the process – a CP’s causal relation – is now defined
as a pair (S,C) consisting of a causal structure S = (V ∪ U,E) – constraining
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possible causalities to the edges – and a context C – in which the causal structure
is valid –, together with some additional conditions, cf. [15, Definition 2]. A
generic example for such a causal relation is provided by Figure 3.

Furthermore, they define a causal relation to be (partially) instantiated with
respect to N ⊆ V by a dataset D, if the conditional probability distributions
(CPDs) corresponding to the variables in N can be estimated from the data set
D.

V1 V2 V3 V4

V5 X V6

V7 V8

φ

V4 = g4(a.p1, . . . , a.pn, b.p2, . . . , b.pm, c.p1, . . . , c.pk)

Context C:
• a exists and is of type C1
• b exists and is of type C1, but does not have property p1
• c exists and is of type C2
• It has to hold that a.p2 < b.p2.

Fig. 3: An exemplary causal relation with causal structure S on the left, error
terms omitted, and context C on the right.X takes the values Im(X) = {cp,¬cp},
where cp corresponds to a criticality phenomenon, and φ is a criticality metric.
C1 and C2 are classes and a, b and c are individuals in the domain ontology. The
inputs of the random variable V4 are indicated by a function g4 taking as inputs
the properties of the individuals in the ontology.

At this point, it is not clear whether we can use also artificial data-generating
processes, such as simulations, or have to stick to real-world observations.

Nonetheless, let us assume we want to generate synthetic data D for the
causal relation of Figure 3 for N = {V2, V3, V4, X, φ}, i.e. for the partial instanti-
ation regarding N by D using a simulator for automated driving, e.g. CARLA or
openPASS. In order generate such a data set D, the following must be fulfilled:

1. the context C of the causal relation must be realizable by a suitable, sam-
pleable scenario class, e.g. as an abstract or logical scenario, compatible with
the simulator,

2. the variables in N must be measurable (and logged) for each concrete sim-
ulation run within the context,

3. these measurements (i.e. the number of executed simulation runs) allow for
the valid estimation of the corresponding CPDs of the variables in N .

Whether these requirements are fulfilled or not highly depends on the context
C, the definition of the random variables in N , and, of course, the simulation
system and models that are being used.

Therefore, there is, in general, no obstruction to the synthetic generation of
data sets for the instantiation of causal relations. However, the usefulness of this
approach rests heavily on the validity on the simulation. In particular for the
plausibilization of causal relations, cf. [15, Sections 3.2 and 5], real-world data
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are indispensable. If adequate real-world data for a causal relation’s instantia-
tion and subsequent plausibilization have been collected, then no knowledge can
extracted from re-instantiating the causal relation with synthetic data. At most,
this can be used as a tool to validate the simulation itself regarding i) whether
the underlying real-world causalities are implemented correctly in the simulation
and ii) in how far the employed synthetic data generation process approximates
the, likely unknown, data generating process of real traffic in the given context.

2.5 Quantification of Causal Effects

Once a causal relation has been instantiated by a data set D with respect to a
suitable set of variables N , the so-called do-calculus can be applied to calculate
various causal effects within that causal relation, cf. [15, Section 3.3]. If the graph
structure and the context are fixed, these quantities are solely determined by the
data set D that is used to instantiate the causal relation. In that regard, there is
no advantage in using synthetic data to calculate such causal effects as the true
causal effects are determined by real-world traffic data. However, a comparison
between causal effects obtained from real-world vs. synthetic data may serve as a
tool to assess a simulation’s validity regarding the implementation of the causal
relations in its context. If the synthetic and real causal effects are close, this
could be taken as positive evidence for a simulation’s validity in that setting.

2.6 Evaluation of Safety Principles

If a plausible causal relation for a CP has been estbalished and its causal effects
are validly reproducable in a simulation system together with adequate simual-
tion models, this virtual setup can be used to evaluate the effectiveness of safety
principles aiming to reduce either the causal effect of the CP on criticality or
the exposure the CP in the given context. Such highly valid simulations that
implement causal relations plausibilized with real-world date present a valuable
tool for the engineering of safety principles for automated driving and have the
advantage that experimental safety principles can be rapidly validated with-
out endangering traffic participants in public testing phases. For further details
on the derivation and evaluation of safety principles we refer to Neurohr et
al. [3, Section 3.3].

3 Derivation of Requirements on Simulation for
Criticality Analysis

In the previous section, we have seen various cases of how simulation can be
applied in a criticality analysis. This usage implies certain features the employed
simulation shall exhibit. Otherwise, we may not be able to uncover associations
or causal effects on synthetic data, engineer and calibrate criticality metrics,
or evaluate safety principles. In other words, the more relevant features are
supported the more simulation becomes valuable for a criticality analysis.
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But how to assess this relevancy? We propose a requirement-based approach
that relies on exemplary scenarios subjected to a simulative criticality analysis.
Thus, we start with a scenario class (e.g., a functional scenario) that the simu-
lation has to (partially) generate concrete scenarios for, which is an overarching
theme for applying simulation in a criticality analysis. The most basic require-
ment that then arises is:

(Req-Top) The simulation shall be able to sample realistic concrete scenarios
from a given scenario class.

However, this top-level requirement is too abstract to be helpful in improving
the simulation. We hence coarsely divide the overall simulation platform into
(a) the simulation system (responsible for executing the simulation) and (b)
the simulation models (implementing the dynamics of the simulated objects).
Within these sub-systems of the overall simulation, useful sub-requirements of
Req-T can be allocated.

3.1 Derivation of Requirements on the Simulation System

In order to sample concrete scenarios, we generally require a certain setup. This
concerns the simulation input (e.g., taking a certain scenario description) and
its output (e.g., the shape of the log files). Moreover, any simulation system
exposes a user interface such as a command line or graphical user interface.
Either way, the criticality analysis imposes requirements on the user interface,
depending on its current process step. For example, when engineering a new
criticality metric, live debugging output and visualization of metrics is desired.
However, when conducting a massive sampling process for the plausibilization of
a causal relation, one may be more interested in controlling the simulation via
the command line and suitable configuration files. These requirements, called
general requirements, are often independent of the scenario class considered for
deriving requirements. However, some requirements on the simulation system can
also be derived from the examined scenario class, e.g., matching the available
input languages against the features described in the scenario class. For example,
we may find that the simulation system shall support an input language which
allows the specification of pedestrian crossings.

Note that when actually conducting this process, a finer distinction of the
overall simulation components will be required.

3.2 Derivation of Requirements on the Simulation Models

Note that the top requirement Req-T requires the samples to be ’realistic’. An
important group of requirements is therefore concerned with ensuring realism of
the behaviors exhibited by the simulation models. In this scope, realism means
that the models show behavior that would happen in real-world settings as well
(and, if the models are probabilistic, these behaviors are distributed similarly).
Various components of the models contribute to realism:
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1. The selected parameter values or distributions for the models are realistic
and match the circumstances of the scenario (e.g., using a valid distribution
of bicyclist speeds in urban areas).

2. Models having appropriate reaction to their environment and adapting their
planned trajectories in accordance with changes in their environment (e.g.,
stopping at red traffic lights).

3. Models communicating appropriately to their environment (e.g., setting turn
signals).

4. The granularity and behavior of their internal sub-models (e.g., having cam-
era and actuator models that exhibit realistic behavior in rainy scenarios).

These examples highlight that, at this point, our scenario-based approach be-
comes valuable: The requirements engineer is able to imagine certain realistic
behaviors that may occur in the concrete scenarios, e.g., a bicyclist driving over
a pedestrian crossing without dismounting. This leads to very specific, action-
able requirements, e.g., the bicyclist model shall cross pedestrian crossing with
a valid dismounting probability.

Besides realism, there are often non-functional requirements. This can con-
cern performance, as the desired sample size can grow large in a criticality anal-
ysis. Moreover, if the models are not real-time capable, a real-time visualization
or output is not possible, which can be required for the engineering of criticality
metrics.

3.2.1 Derivation of Requirements on Sensor Models As a special case
of scenario-based requirements, we consider the derivation of requirements on
sensor models from criticality phenomena (CP). This is a special case as CP,
such as ’Occlusion’, define abstract scenario classes, cf. [2, Definition 4].

The guiding principle to derive CP-based requirements on sensor models can
be formulated as ’What properties of the sensor model are necessary so that the
effect of the CP is visible?’. Implementing such properties in the sensor model
greatly enhances their value to the criticality analysis and validity.

Table 1 sketches some examples for CP-based requirements on a phenomeno-
logical respectively physical camera model. If resources are available, this could
be easily extended to cover many other CP as well as other sensor technologies
such as lidar and radar sensors.

4 Requirements on openPASS for Criticality Analysis

In this section we illustrate the derivation of requirements on simulation for
criticality analysis in the concrete case of the open source simulation platform
openPASS [16]. Within the VVM project, the development of openPASS is facil-
itated as explained in Section 3 in order to realize the simulation use cases of the
criticality analysis, cf. Section 2. Therefore, after a brief introduction to open-
PASS in Section 4.1, we elicit requirements for criticality analysis on openPASS,
both in general and scenario-based, in Section 4.2. We close the section with
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Table 1: Exemplary criticality phenomena-based requirements on a phenomeno-
logical respectively physical camera model (CM) for criticality analysis.

ID CP
Required Effect on
Phenomenological
CM

Required Effect on
Physical CM

Intention (Effect on
Criticality)

C#1 Glare

Objects which are
close to the intensive
light sources on the
2D projection are
perceived with
reduced accuracy or
not at all

Pixels in the 2D
camera image are
over-modulated due to
overly intense lighting;
seems very unpractical
due to high dependence
on actual camera

Scenarios become more
critical on average due
to non-perception/mis-
perception (increased
false-negative
rate/classification
uncertainty) of
occluded objects

C#2
Occlu-
sion

Objects in
line-of-sight block the
perception of occluded
objects according to
transparency and
degree of the occlusion

Occlusion is mapped to
the 2D camera image
according to rays of
light being blocked by
the occluding objects
and its transparency
and shape

Scenarios become more
critical on average due
to non-perception
(increased
false-negative rate) of
occluded objects

C#3
Mirror-
ing

Objects in near
reflecting surfaces
appear twice in the
environment
according to light
source angle, distance
and position relative
to reflecting surface

Projection of the object
is mapped to the 2D
camera image
according to the rays of
light emitted by the
reflecting surface

Simulation of
ghost-objects
(increased false-positive
rate); Mis-perception of
objects due to strong
reflecting surfaces

C#4

Air
Parti-
cles

Reduce the
classification and edge
detection sensitivity

Impact of the particles
on the single light rays
is modeled (absorption,
scattering), or the 2D
camera image can be
distorted using 2D
effects

Air particles can
disturb camera image
such that edge and
object detection
becomes complicated

C#5

Lim-
ited
Global
Light
Source

Reduce the
classification and edge
detection sensitivity

Reduce the saturation
of the 2D camera image
a posteriori, or reduce
the actual number of
rays hitting the camera
sensor, i.e. implement
the exposure in the CM

Low illumination leads
to underexposure of
images, resulting in
difficulties for edge and
object detection

a summary of the developments in openPASS within the context of the VVM
project, and an outlook regarding further necessary developments in Section 4.3.
Note that the requirements on and developments in openPASS are due to the
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VVM project’s GUA5, which is a working group within VVM to develop and
adjust openPASS according to the needs of the criticality analysis.

4.1 Introduction to openPASS

Within the VVM project multiple simulation tools are applied to tackle the
simulation tasks coming from the criticality analysis. One of those tools is the
open Platform for Assessment of Safety Systems (openPASS) [16].

The rise of advanced driver assistance systems (ADASs) and automated driv-
ing systems comes along with the need to assess these systems and their effects
in computer simulations. This particularly refers to safety effects in traffic. There
are various methods and tools for prospective evaluation of safety systems with
respect to traffic safety. Implementing the method by creating and maintaining
the openPASS platform will support reliability and transparency of results ob-
tained by simulation. The growing number, complexity, and variety of automated
driving functionality make simulation an essential part in research, development,
testing, public rating, and potentially even homologation. It is thus, directly or
indirectly, required by all stakeholders in vehicle safety, such as manufacturers,
suppliers, insurance companies, legislators, consumer advocates, academia, and
others. The aim is to provide a software platform that enables the simulation of
traffic situations to predict real-world effectiveness of ADASs and ADSs.

Fig. 4: Screenshot of simultating FUC¸2-3, cf. Figure 12, using openPASS. The
green car is equipped with a simple HAD function. The bicyclist is occluded by
the parking car [17].



14 C. Neurohr et al.

In short, openPASS specifies an open source platform for a prospective safety
assessment of those technologies. Originally, the term ’openPASS’ formed a back-
ronym for ’Open Platform for the Assessment of Safety Systems’, but it was
expanded beyond the limitations of safety systems towards any kind of driving
automation functionality. Thus, one of the main target objectives is to become a
broadly accepted platform for the assessment of the effectiveness of ADASs and
ADSs. For this, as a first step, the openPASS working group seeks to develop a
trustworthy, reliable and transparent platform.

OpenPASS is a framework for simulating the interactions between traffic
participants for the evaluation and calibration of active safety systems. While
each simulation run is based on a specific configuration, there is the possibility of
parameter variation. Therefore, multiple slightly different simulation runs based
on the same configuration are possible.

Historically, the software suite of openPASS started as a set of stand-alone
applications, which can be installed and configured individually. Over time the
graphical user interface evolved to be a single entry point.

4.2 Derivation of Requirements on openPASS for Criticality
Analysis

Here, we follow through with the derivation of requirements as indicated in
Section 3. We start with general, scenario-independent requirements openPASS
in Section 4.2.1, provided as a table. Then, we derive requirements from the
so-called functional use cases (FUCs) which are the 12 characteristic functional
scenarios that have been used for the continuous evaluation of methods in the
VVM project [18]. These 12 functional scenarios are comprised of three different
urban intersections (FUC1, FUC2, FUC3) with four variations of increasing
complexity each (FUCx.0,. . . ,FUCx.3). The corresponding derived requirements
are presented in Section 4.2.2, Section 4.2.3, and Section 4.2.4 respectively.

It is important to mention that we do not repeat requirements that reap-
pear for a subsequent scenario, i.e. if a requirement has already been listed for
FUC1.1, but it is relevant to FUC1.2 as well, we do not list it again. As the
number of scenarios used for requirement elicitation grows, we do expect the
number of novel requirements to decrease. Such an saturation effect would in-
dicate that the scenario-based requirement eliciation for criticality analysis is
indeed a convergent process.

The tables which are used to organize the elicited requirements in the follow-
ing have four columns, featuring (i) a requirement ID, (ii) the requirement itself,
(iii) the type of requirement, and (iv) how the requirement was covered. Regard-
ing (iii), note that, we refine the simple classification between ’simulation system’
and ’simulation models’ a litte further by subdividing the simulation system into
’simulation core’, ’(external) components’, and ’3D models’ (i.e. visualization)
and ’models’ has ’model interaction’ as a subcategory.
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4.2.1 General Requirements for Criticality Analysis The elicitation of
general, i.e. scenario-independent, requirements on openPASS is documented in
Table 2.

4.2.2 Scenario-based Requirements for Functional Use Case 1 The
elicitation of requirements on openPASS derived from FUC1-0, cf. Figure 5,
is documented in Table 2. Likewise, the requirements derived from FUC1.1,
cf. Figure 6, FUC1.2, cf. Figure 7, and FUC1.3 cf. Figure 8, are documented in
the Tables 4, 5, and 6 respectively.

Fig. 5: Functional Use Case 1.0: Left turn on an X-crossing with traffic lights.

Fig. 6: Functional Use Case 1.1: Traffic with Right of Way.

Fig. 7: Functional Use Case 1.2: Traffic with Right of Way and Occlusion.

4.2.3 Scenario-based Requirements for Functional Use Case 2 Here,
we list the requirements derived from FUC2.0, cf. Figure 9, and its variations
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Fig. 8: Functional Use Case 1.3: Dysfunctional Traffic Lights at Rush Hour.

FUC2.1, FUC2.2, FUC2.3, visualized by Figures 10, 11, and 12 respectively.
The requirements derived from FUC2.0 are documented in Table 7 and the
requirements derived from FUC2.1, FUC2.2, and FUC2.3 appear in Table 8.̧

Fig. 9: Functional Use Case 2.0: Straight Passing of a T-Crossing with Pedestrian
Crossing.

Fig. 10: Functional Use Case 2.1: Traffic with Right of Way.

Fig. 11: Functional Use Case 2.2: Pedestrian, Bicyclist, and Oncoming Traffic.

4.2.4 Scenario-based Requirements for Functional Use Case 3 Due to
a saturation effect already reducing the number of additional requirements, we
display the requirements derived from FUC3.0, FUC3.1, FUC3.2, and FUC3.3
in a single Table 9. The visualizations of these functional use cases are given by
the Figures 13, 14, 15, and 16 respectively.
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Fig. 12: Functional Use Case 2.3: Occlusion of Bicyclist through Parking Cars.

Fig. 13: Functional Use Case 3.0: Left Turn on a Bending Right of Way Crossing.

Fig. 14: Functional Use Case 3.1: Traffic with Right of Way.

Fig. 15: Functional Use Case 3.2: Traffic and Pedestrian with Right of Way.

Fig. 16: Functional Use Case 3.3: Ambulance with Following Car.

4.3 Developments in openPASS for Criticality Analysis

Having derived general and scenario-based requirements on openPASS in Sec-
tion 4.2, we now summarize which of them were realized within the VVM project,
particularly through GUA5. The respective Tables 3, 4, 5, 6, 7, 8, and 9 already
contain that information in their last column called covered by.
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There are essentially three categories of contributions: developments directly
from the openPASS working group, developments within the SET Level project
and developments within the VVM project.

Regarding the general requirements of Section 4.2.1, the VVM GUA5 mainly
contributed to implementing the requirements G#1 and G#5.1 (weather and
environmental conditions). Notably, G#2 (evaluation of criticality metrics) was
realized within VVM by integrating, as an external component, the tool CriSys
which was developed by ZF in the context of the VVM criticality analysis [11].

On the infrastructure level, FUC1 demanded traffic lights. These were avail-
able in openDRIVE, but could previously not be handled by openPASS. Im-
plemented by VVM GUA5, traffic lights are now available in openPASS, cor-
responding to requirement FUC1.0#1. Another development from VVM GUA5
regarding the infrastructure is the availability of pedestrian crossings in open-
PASS, as requested by FUC2.0#1.

As FUC1.1, FUC2.2, and FUC2.3 contain a bicyclist and no bicycle model
was available to us, an openPASS-specific bicycle model was developed within
VVM GUA5. The developed bicycle model even implements stochastic behavior
in FU2.3: Either the model stops the bicycle at the pedestrian crossing, the
cyclist dismounts and pushes the bicycle across the street or the model rides
over the pedestrian crossing without dismounting, automatically resulting in a
higher speed when crossing the intersection. The development of such a bicycle
model directly addresses the requirements FUC1.1#4.

Due to incompatibility with the VVM functional use cases, we could not
use the ADS model from SET Level, but had to develop our own driving au-
tomation. Based on the Closed-Loop Driver Model and the Object-based Camera
Object Model from the SET Level project7, we implemented driving functional-
ity that could handle the requirements imposed by the FUCs, e.g. ego perceiving
bicyclist (FUC2.2#1) or implementing the CP ’Occlusion’ (FUC2.3#3). More-
over, the developed ADS model fulfills the requirements FUC1.0#3, FUC2.0#2,
FUC2.0#3, and FUC2.0#5.

5 Conclusion

In this work, we examined in-depth the relation between a methodical criticality
analysis and virtual simulation of automated driving systems. In particular, we
described various simulation use cases coming from the criticality analysis. These
simulation use cases impose requirements on the simulation system as well as on
simulation models. Furthermore, we provided a process how these requirements
can be derived systematically, using a scenario-based approach. This process was
subsequently evaluated in case of the open source simulation platform openPASS.

Future work could analyze which simulators are best suited for criticality
analysis by checking the amount of satisfied requirements. Clearly one could
also invest more time and effort in writing down scenario-based requirements

7 https://gitlab.setlevel.de/open
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as to facilitate completeness of a catalog of requirements for criticality analysis
exploiting saturation effects. Finally, the elicitation of requirements on sensor
models could be expanded to the entire CP-catalog and to other sensor tech-
nologies.
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1. Eckard Böde, Matthias Büker, Ulrich Eberle, Martin Fränzle, Sebastian Gerwinn,
and Birte Kramer. Efficient Splitting of Test and Simulation Cases for the Veri-
fication of Highly Automated Driving Functions. In Computer Safety, Reliability,
and Security: 37th International Conference, SAFECOMP 2018, Väster̊as, Swe-
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Table 2: General requirements, i.e. scenario-independent, on openPASS for crit-
icality analysis.

ID Requirement Type Covered By

G#1

openPASS is able to implement weather
conditions as specified using
OpenSCENARIO v1.0

Simulation
Core

VVM GUA5 & and
SET Level

G#2

openPASS supports the evaluation of
criticality metrics, either by
live-evaluation during simulation run
time, or evaluation after the simulation
run using logged data

External
Component

First option: TTC,
THW & ’speeding’
available in
openPASS; Second
option: Integration
of CriSys in
toolchain

G#3

openPASS supports the ingestion of
parameter ranges and distributions as
well as the deterministic & stochastic
variation of such scenario parameters, e.g.
specified by openSCENARIO v1.0
(timing, position, speed, triggers, ...) and
specified by openDRIVE v1.6 (lane width,
number of lanes, ...)

External
Component

SET Level
(dSpace-Script)
only
OpenSCENARIO;
no variation of
OpenDRIVE

G#4

(Optional) openPASS allows a rollback
during a scenario run back to a certain
point in the history of the run (enabling
rare event simulation)

Simulation
Core

not covered

G#5

Models (sensor, vehicle, driver) used in
openPASS react realistically to
environmental conditions (such as
weather)

Model
Interaction,
Simulation
Core

see
sub-requirements
#5.1 and #5.2

G#5.1

Environmental conditions from
OpenSCENARIO are available in
openPASS

Simulation
Core

VVM GUA5

G#5.2

Models in openPASS make use of
environmental conditions (such as
weather)

Model
Interaction

not covered

G#6

openPASS supports Visualization (at
least 2D) of all simulated entities over
time

External
Component

Open Source
Visualization of
BMW

G#7

openPASS enables (synchronized?)
parallelized execution of multiple
simulation runs

Simulation
Core

not covered

G#8
openPASS supports a headless mode
(mode without GUI)

Simulation
Core

available in
openPASS

G#9
openPASS can batch-execute simulation
runs

Simulation
Core

available in
openPASS

G#10
openPASS supports the deterministic and
stochastic variation of model parameters

Models
available in
openPASS
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Table 3: Scenario-based requirements on openPASS for criticality analysis, de-
rived from VVM Functional Use Case 1.0.

ID Requirement Type Covered By

FUC

1.0#1

openPASS is able to interpret complex
X-crossings including markings and traffic
lights specified using openDRIVE v1.6

Simulation
Core

Crossing and
Markings available
in openPASS;
Traffic Lights:
VVM GUA 5

FUC

1.0#2

openPASS is able to interpret a vehicles
trajectory (or sequence of maneuvers;
here: turn left if traffic light is green and
no intersecting traffic) specified using
openSCENARIO v1.0

Simulation
Core

available in
openPASS

FUC

1.0#3

Model of an AD system (ego) including
perception, planning and decision making

Models

Driver and camera
model: SET Level;
ADS: VVM GUA5
based on SL models

FUC

1.0#4
Vehicle Model including actuators Models SET Level

FUC

1.0#5
Sensor Models (Radar, Lidar, Camera, ...) Models SET Level

FUC

1.0#6

3D-Model for passenger car, crossing,
infrastructure

3D-Models not covered

FUC

1.0#7

openPASS supports ”nowhere boxes”
(areas in which certain entities are not
allowed to spawn / occur)

Simulation
Core

available in
openPASS (by
design)
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Table 4: Scenario-based requirements on openPASS for criticality analysis, de-
rived from VVM Functional Use Case 1.1.

ID Requirement Type Covered By

FUC

1.1#1

Driver model(s) for passenger car
following a trajectory (or sequence of
maneuvers); Driver model supports
pseudo-randomized behavior

Models

Driver Model from
SET Level follows
trajectories; No
pseudo-randomized
behavior

FUC

1.1#2

Interaction between ego and passenger
car: ego perceiving passenger car, ego
adhering to traffic rules by giving right of
way

Model
Interaction

Implemented in
actor models

FUC

1.1#3

Pedestrian model(s) for pedestrian
crossing half of the street (following a
trajectory or sequence of maneuvers);
Pedestrian model supports
pseudo-randomized behavior

Models

Pedestrian Model
from SET Level
follows trajectories;
No
pseudo-randomized
behavior

FUC

1.1#4

Bicyclist model(s) for bicyclist crossing
the street (following a trajectory or
sequence of maneuvers); Bicycle model
supports pseudo-randomized behavior

Models

VVM GUA5
(openPASS-
internal bicyclist
model)

FUC

1.1#5

3D-Models for pedestrian, bicyclist, blue
passenger car

3D Models not covered

Table 5: Scenario-based requirements on openPASS for criticality analysis, de-
rived from VVM Functional Use Case 1.2.

ID Requirement Type Covered By

FUC

1.2#1

Driver model(s) for Truck following a
trajectory (or sequence of maneuvers);
Driver model supports
pseudo-randomized behavior

Models not covered

FUC

1.2#2

Interaction between ego, green passenger
car and truck in the middle of the
intersection

Model
Interaction

not covered

FUC

1.2#3

Sensor models accurately reflect limited
information about blue passenger car
hidden by the truck, thus implementing
the criticality phenomenon ’occlusion’

Model
Interaction

SET Level

FUC

1.2#4

3D-Models for truck, green/red passenger
car

3D Models not covered

FUC

1.2#5

Vehicle model for Truck including
actuators

Models not covered
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Table 6: Scenario-based requirements on openPASS for criticality analysis, de-
rived from VVM Functional Use Case 1.3.

ID Requirement Type Covered By

FUC

1.3#1

openPASS is able to interpret suspended
traffic lights, traffic signs

Simulation
Core

Traffic signs
available in
openPASS;
Suspended traffic
lights not available

FUC

1.3#2

AD system (ego) reacts to suspended
traffic lights and aheres to traffic signs

Models

SET Level Driver
Model reacts to
traffic signs, but
does recognize
suspended traffic
lights

FUC

1.3#3

Driver models react to suspended traffic
lights and adhere to traffic signs; Driver
model supports pseudo-randomized
behavior

Models

SET Level driver
model reacts to
traffic signs, but
does recognize
suspended traffic
lights

FUC

1.3#4

Interaction between ego and passenger
cars: ego perceiving passenger cars, ego
adhering to traffic rules

Model
Interaction

Implemented in
actor models

FUC

1.3#5

A variety of different 3D models for
passenger cars is available

3D Models not covered
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Table 7: Scenario-based requirements on openPASS for criticality analysis, de-
rived from VVM Functional Use Case 2.0.

ID Requirement Type Covered By

FUC

2.0#1

openPASS is able to interpret T-crossings
including bicycle paths and pedestrian
crossing specified using openDRIVE v1.6

Simulation
Core

Pedestrian
crossing: VVM
GUA 5; other:
already available in
openPASS

FUC

2.0#2

AD system (ego) perceives absence of
pedestrians/bicyclists

Models

VVM GUA 5
(based on driver
and camera model
from SET Level)

FUC

2.0#3

AD system (ego) perceives absence of
road users with right of way

Models

VVM GUA 5
(based on driver
and camera model
from SET Level)

FUC

2.0#4

3D-Model for T-crossing, pedestrian
crossing, traffic sign

3D-Models

Open Source
Visualization
(BMW) supports
these features

FUC

2.0#5

AD system (ego) perceives pedestrian
crossing

Models

VVM GUA 5
(based on driver
and camera model
from SET Level)
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Table 8: Scenario-based requirements on openPASS for criticality analysis, de-
rived from VVM Functional Use Cases 2.1, 2.2, and 2.3 respectively.

ID Requirement Type Covered By

FUC

2.1#1

Interaction between ego and passenger
car: ego perceiving passenger car, ego
adhering to traffic rules by giving right of
way

Model
Interaction

Driver and camera
model from SET
Level

FUC

2.2#1

Interaction between ego, pedestrian,
bicyclist and passenger car: ego perceives
pedestrian, bicyclist, passenger car; ego
adhering to traffic rules by letting the
pedestrian pass, but passing the
intersection in front of the blue passenger
car

Model
Interaction

Driver and camera
model from SET
Level; VVM GUA5
regarding bicycle

FUC

2.3#1

AD-system (ego) perceives absence of
oncoming traffic

Models
Driver and camera
model from SET
Level

FUC

2.3#2

openPASS is able to interpret parking
vehicles specified using openSCENARIO
v1.0

Simulation
Core

avaialble in
openPASS

FUC

2.3#3

Sensor models accurately reflect limited
information about the bicyclist hidden
behind the parking vehicles, thus
implementing the criticality phenomenon
’occlusion’

Model
Interaction

Camera model
from SET Level

FUC

2.3#4
3D-Model for a (delivery) van 3D-Models not covered
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Table 9: Scenario-based requirements on openPASS for criticality analysis, de-
rived from VVM Functional Use Cases 3.0, 3.1, 3.2, and 3.3.

ID Requirement Type Covered By

FUC

3.0#1

openPASS is able to interpret an
X-crossing with non-orthogonal arms
(ideally, at arbitrary angles) and bicycle
lane including markings and traffic signs
specified using openDRIVE v1.6

Simulation
Core

available in
openPASS

FUC

3.1#1

Driver model(s) for a Van following a
trajectory (or sequence of maneuvers);
Driver model supports
pseudo-randomized behavior

Models

Driver model from
SET Level follows
a trajectory; does
not support
pseudo-randomized
behavior

FUC

3.1#2

Interaction between ego and van: ego
perceiving van, ego adhering to traffic
rules by giving right of way before leaving
the major road

Model
Interaction

Driver and camera
model from SET
Level; Priority
rules too
complicated for
driver model here

FUC

3.2#1

AD system (ego) perceives all actors
(red/blue passenger car, pedestrian, van)
and interprets the situation according to
traffic rules

Models

Driver and camera
model from SET
Level; Priority
rules too
complicated for
driver model here

FUC

3.3#1

Driver model(s) for an amublance
following a trajectory (or sequence of
maneuvers) with/without active sirens;
Driver model supports
pseudo-randomized behavior

Models

SET Level driver
model can be used;
does not support
pseudo-randomized
behavior

FUC

3.3#2

Driver model(s) for a vehicle conditionally
following another vehicle

Models

SET Level driver
model implements
vehicle following;
adherence to traffic
rules is a separate
consideration

FUC

3.3#3

AD system (ego) perceives all actors (blue
passenger car, ambulence) and interprets
the situation according to traffic rules

Models

Driver and camera
model from SET
Level; Priority
rules too
complicated for
driver model here

FUC

3.3#4

Interaction of ego, ambulence and blue
passenger car: ego recognizes active sirens
of the ambulence and gives right of way,
ego leaves major read before the blue
passenger car

Interaction
of models

not covered
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